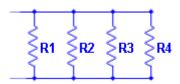
RESISTENZE COLLEGATE IN SERIE

Se colleghiamo più resistenze in modo che il terminale di uscita di ognuna sia in contatto con il **solo** terminale di ingresso della successiva, otteniamo un collegamento in serie.


Tutte le resistenze **sono attraversate dalla stessa corrente**. L'effetto globale è uguale a quello ottenibile con un'unica resistenza **R**, chiamata **resistenza equivalente**, avente come valore la somma delle singole resistenze:

$$R = R1 + R2 + R3 + R4$$

Ne consegue che la resistenza equivalente avrà un valore più alto della più alta resistenza presente nel collegamento. Inoltre **aggiungere una resistenza in serie** significa obbligatoriamente **aumentare** la *resistenza equivalente*.

RESISTENZE COLLEGATE IN PARALLELO

Se colleghiamo più resistenze in modo che tutti i terminali di ingresso siano in contatto solo tra loro e così anche i terminali di uscita, otteniamo un collegamento in parallelo.

Tutte le resistenze **sono sottoposte alla stessa tensione.** L'effetto globale è uguale a quello ottenibile con un'unica resistenza **R**, chiamata **resistenza equivalente**, il cui valore si ricava dalla seguente formula:

$$\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + \frac{1}{R4}$$

Aggiungere una resistenza in parallelo significa obbligatoriamente **diminuire** la *resistenza equivalente*. Pertanto la resistenza equivalente di un collegamento in parallelo, sarà sempre più bassa della più bassa resistenza presente.

DUE RESISTENZE COLLEGATE IN PARALLELO

Se colleghiamo solo due resistenze in parallelo, la formula per il calcolo della resistenza equivalente non cambia, ma con semplici passaggi matematici si riduce alla forma

$$R = \frac{R1 \cdot R2}{R1 + R2}$$

Se le due resistenze sono **uguali**, la *resistenza equivalente* ha come valore la metà della singola resistenza.